Liczby, a nie przymiotniki : [4]Wiatr
  • Rys. 4.1.
  • min
  • Rys. 4.2.
  • min
  • Rys. 4.3.
  • min
  • Rys. 4.4.
  • min
  • Rys. 4.5.
  • min
  • Rys. 4.6.
  • min
min

Wiatr

Wielka Brytania dysponuje najlepszymi zasobami wiatru w Europie.
Komisja ds. Zrównoważonego Rozwoju

Farmy wiatrowe zniszczą wiejski krajobraz, do tego zupełnie bezsensownie.
James Lovelock

04 lipca 2011

Jak wiele energii wiatrowej moglibyśmy potencjalnie wytworzyć? Możemy oszacować potencjał wiatru wiejącego na lądzie w Wielkiej Brytanii poprzez pomnożenie średniej mocy farm wiatrowych na jednostkę powierzchni przez powierzchnię przypadającą na osobę w Wielkiej Brytanii: moc na osobę = moc wiatru na jedn. pow. x jedn. pow. na osobę .

Rozdział B (str. 279) wyjaśnia, jak oszacować moc na jednostkę powierzchni, dostarczaną przez farmę wiatrową w Wielkiej Brytanii. Jeśli typowa prędkość wiatru wynosi 6 m/s (22 km/h), to moc farmy wiatrowej na jednostkę powierzchni jest równa 2 W / m2 .

Prawdopodobnie prędkość wiatru równa 6 m/s dla wielu miejsc w Wielkiej Brytanii jest przeszacowana. Na przykład Rys. 4.1. przedstawia średnie dzienne prędkości wiatru w Cambridge w roku 2006. Osiągają one tam 6 m/s zaledwie przez 30 dni w roku – histogram znajduje się na Rys. 4.6. Jednakże w niektórych miejscach średnie prędkości wiatru przekraczają 6 m/s – na przykład, na szczycie góry Cairngorm w Szkocji (Rys. 4.2.) Włączając do obliczeń gęstość zaludnienia w Wielkiej Brytanii, czyli 250 osób na kilometr kwadratowy – lub inaczej mówiąc 4000 m2 na osobę, stwierdzimy, że farmy wiatrowe mogą wygenerować: 2 W/m2 x 4000 m2/osobę = 8000 W na osobę .

To wartość uzyskana przy założeniu, że farmy wiatrowe byłyby upakowane na powierzchni całego kraju oraz zakładając, że 2 W/m2 jest poprawną wielkością mocy na jednostkę powierzchni. Zamieniając ten wynik na naszą ulubioną jednostkę mocy, otrzymamy 200 kWh/dobę na osobę .

Bądźmy jednak realistami. Jaką część kraju możemy wyobrazić sobie rzeczywiście pokrytą wiatrakami? Może 10%? Wniosek z tego taki, że jeśli pokryjemy wiatrakami (dostarczającymi 2 W/m2) najbardziej wietrzne 10% powierzchni kraju, to będziemy w stanie wygenerować 20 kWh/dobę na osobę, co stanowi połowę mocy zużywanej na przejeżdżanie 50 km dziennie przeciętnym samochodem napędzanym paliwami kopalnymi .

Może i lądowe zasoby wiatrowe Wielkiej Brytanii są ogromne, jednakże ewidentnie nie są wystarczające, by zaspokoić nasze ogromne zużycie energii. Do farm wiatrowych położonych na morzu przejdziemy później .

Prędkość wiatru w Polsce, średnio rzecz biorąc, jest trochę niższa niż w Wielkiej Brytanii, jednak są to niewielkie różnice, którą w dużym stopniu możemy skompensować, budując trochę wyższe wiatraki. Średnią prędkość wiatru wynoszącą 6 m/s w miejscach o bardzo dobrych warunkach wiatrowych mamy na wysokości około 60–80 m, co dość dobrze odpowiada wysokości budowanych wiatraków. Jednak raczej nie znajdziemy 30 000 km2 dopuszczonych do zabudowy miejsc o tak dobrych warunkach wiatrowych .
Załóżmy więc, że nasze wiatraki będą stać w miejscach ze średnią prędkością wiatru na poziomie 5,5 m/s. Oznacza to moc na jednostkę powierzchni równą 1,5 W/m2 .

W Polsce na 1 osobę przypada 8000 m2, czyli dwa razy więcej niż w Wielkiej Brytanii, co daje nam moc całkowitą rzędu 30 kWh na osobę dziennie .
Czyniąc za Davidem założenie, że zabudowujemy farmami wiatrowymi, wiatrak przy wiatraku, 10 procent powierzchni Polski, dostajemy ostatecznie wynik 30 kWh/dobę na osobę, czyli znacząco lepiej niż w Wielkiej Brytanii .

Powinienem szczególnie podkreślić, jak szczodre są poczynione przeze mnie założenia. Porównajmy nasze oszacowanie brytyjskiego potencjału wiatrowego z obecnie istniejącą infrastrukturą wiatrową na świecie. Liczba wiatraków, które byłyby potrzebne do zaopatrzenia Wielkiej Brytanii w 20 kWh/dobę na osobę, jest 50 razy większa od całej infrastruktury wiatrowej Danii, 7 razy większa niż na wszystkich farmach wiatrowych Niemiec i dwa razy większa od liczby wszystkich istniejących turbin wiatrowych na świecie .

Proszę, nie zrozumcie mnie źle. Czy mówię, że nie powinniśmy zawracać sobie głowy budowaniem farm wiatrowych? Wcale nie. Po prostu staram się przekazać pomocny w rozważaniach fakt, że gdybyśmy chcieli, aby energetyka wiatrowa rzeczywiście miała znaczenie, to farmy wiatrowe muszą pokrywać naprawdę ogromne powierzchnie .

Wniosek ten – że maksymalny udział wiatru na lądzie, choć ogromny, nie pokrywa naszego zapotrzebowania – jest istotny. Zweryfikujmy zatem kluczową wielkość – założoną przez nas moc farmy wiatrowej na jednostkę powierzchni (2 W/m2) i porównamy ją z wartością odpowiadającą rzeczywistej brytyjskiej farmie wiatrowej .

Farma wiatrowa Whitelee, położona niedaleko Glasgow w Szkocji, posiada 140 turbin o łącznej mocy szczytowej wynoszącej 322 MW; całość przypada na powierzchnię 55 km2, co oznacza maksymalnie 6 W/m2. Średnia generowana moc jest mniejsza, ponieważ turbiny nie pracują z maksymalną mocą przez cały czas. Stosunek średniej mocy do mocy szczytowej nazywany jest współczynnikiem obciążenia lub współczynnikiem wykorzystania mocy. Jego wielkość może być bardzo zróżnicowana w zależności od miejsca, do którego się odnosi. Zazwyczaj współczynnik ten dla dobrze umiejscowionej farmy wiatrowej z nowoczesnymi turbinami wynosi 30%. Jeśli założymy, że Whitelee ma współczynnik obciążenia równy 33%, to średnia produkcja mocy na jednostkę powierzchni wynosi 2 W/m2, a więc dokładnie tyle samo, ile wyliczyliśmy wcześniej .

Farma wiatrowa Karcino, zlokalizowana niedaleko Kołobrzegu, posiada 17 turbin Vestas typu V90-3 o średnicy wirników 90 m, zamontowanych na wieżach o wysokości 105 m. W tym miejscu o bardzo dobrych warunkach wiatrowych i na tak dużej wysokości średnia prędkość wiatru wynosi 7 m/s. Łączna moc szczytowa wynosi 51 MW i przypada na powierzchnię 6 km2, czyli moc maksymalna farmy wynosi 8,5 W/m2. Uruchomiona w 2010 roku farma ma wytwarzać 120 GWh rocznie, co oznacza średnią produkcję mocy na jednostkę powierzchni równą 2,3 W/m2. Trochę więcej niż w wyliczeniach, jest to jednak przykład elektrowni położonej w szczególnie sprzyjającym miejscu i wyposażonej w bardzo wysokie wiatraki .

przypis. 4.1.

link terra